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Agenda

 Introduction 5 min

 Addressing Field Failures 5 min

 Data from the Field 5 min

 Reliability Analysis of Field Failures 10 min

 Application of Model 10 min

 Cause Implications 5 min

 Physical Mechanisms/Remediation   5 min

 Summary 5 min

 Questions 10 min
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Introduction

 Field Failures in New Servers

 In 1999, Sun Microsystems began experiencing a 

number of field failures in new servers

 The failures were sudden, unexpected, and could 

cause the system to “panic”.

 Engineers spent considerable efforts to restore 

systems to operation and prevent recurrence

 Boards experiencing a failure were replaced and 

returned to Sun for analysis.

 Extensive data logging of conditions at the time of 

the failure were recorded for analysis.
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System Boards

 Typical system board

 Approximate size is 2’x2’ and weight ~30 lbs.

 Cost ~$100,000 per board

 Boards returned for analysis to factory

 Damage in transit was not uncommon.

 After analysis, over 95% of returned boards were 

classified as no trouble found (NTF). Remaining 5% 

were often determined to be damaged in transit.



David C. Trindade, Sun Microsystems, Inc. Slide Number: 5Session 5Track 2

A
p

p
li
e

d
 R

e
li

a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a

 2
0

0
9

Actions to Identify Cause of Failures

 Extensive stressing and testing of new and 

returned boards in systems

 Physical failure analysis of returned boards

 Replacement with new boards

 Observational visits to customer sites

 Field environmental measurements 

 Data logging activity (Explorer runs)

 Consultation with suppliers

 Frequent review and update meetings of teams 

of engineers and management
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Failure Mode: E-Cache Parity Errors

Months of work identified parity errors in e-cache 

(external, L2) SRAMS as problem location but 

determining exact cause was elusive.
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Slow Progress in Isolating Causes

 Failures continued in the field

 Service engineers worked diligently to diagnose 

failures and restore systems

 Costs of field repairs escalated

 Customers demanded prompt resolution 
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Data Collection Team

 A team was formed to collect data on field 

failures

 Data from major customers’ datacenters were 

collected

 The importance of acquiring time dependent 

field data was emphasized 
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Data: Random Field Behavior?

 Some customers experienced no failures

 Other customers saw high levels of failures for 

the same systems 

 A customer in a concrete vault below ground 

level saw no failures

 Other customers in high altitude environments 

(observation stations) had more  frequent 

failures

 Was altitude or barometric pressure a factor? 



David C. Trindade, Sun Microsystems, Inc. Slide Number: 10Session 5Track 2

A
p

p
li
e

d
 R

e
li

a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a

 2
0

0
9

Datacenter Field Failures

In the same datacenter, customers running 

different applications on identical systems 

experienced widely different failure rates, that 

is, rate of occurrence of failures (ROCOF). 
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Example of Application Dependence

Application

Single Datacenter, 476 Identical Systems
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R
Annualized Failure Rates Versus Application
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Distribution of Failures Across 

Systems

In the same datacenter, for identical systems 

running the same applications over the same 

time period, there could be systems with no

failures, some with single failures, and some 

with multiple failures.  
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Example of Failure Distribution
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Statistical Analysis and Modeling

 Could statistical analysis and modeling of the 

data provide any insights into the cause?

 How could the application dependence be 

explained?

 Could the model agree with field behavior and 

predict future failures?

 Could we explain the distribution of failures 

across systems in a datacenter?
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Reliability Measures for Repairable 

Systems

Key measures

 Times between repairs (interarrival times)

 Number of repairs over time

Reliability is a function of many factors:

Basic system design Types of repairs

Operating conditions Quality of repairs

Environment Materials used

Applications Suppliers

Software robustness Human behavior
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System Age

 System age is the total running hours, that is, the 

elapsed time, on a system starting at installation turn-

on.  Also called power-on hours (POH) or operating 

hours.

 Often called the uptime

 Distinguish from times between failures (interarrival

times) and device-hours or unit-hours.
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Sequence of Failure Times

Key property of repairable systems:
 Failures occur sequentially in time.

 If the times between successive failures are getting longer, 

then the system reliability is improving.

 Conversely, if the times between failures are becoming 

shorter, the reliability of the system is degrading.

 Thus, the sequence of system failure times can be very 

important.

 If the times show no trend (relatively stable), the system is 

neither improving or degrading, a characteristic of what is 

called a renewal process.   
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Renewal Process for a System

Critical question:
 For a renewal process, the times between failures are 

independent and identically distributed (i.i.d.)

observations from a single population. How can we 

verify such an assumption?

 In a renewal process, there is no trend.

 For a system, restoration to “like new,” such as 

replacement of a failed component with one from 

same population, implies a renewal process (i.i.d.).  

 The assumption of a renewal process must be 

checked for validity.
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Analysis of a Renewal Process

Consider a single system for which the times to make 

repairs are ignored.

Ten failures are reported at the system ages (in hours):

106, 132, 289, 309, 352, 407, 523, 544, 611, 660.

The pattern of repairs is

0 100 200 300 400 500 600 

* * * * * * * * * * 

700 

System Age (hours)
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Analysis of a Renewal Process

A very revealing and useful data graph is called the 

cumulative plot: the cumulative number of repairs, 

N(t), is plotted against the system age, t, at repair.

For the renewal data, the cumulative plot is:
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Analysis of a Renewal Process

Under a renewal process, the times between failures are i.i.d., that 

is, from a single population having a constant mean time 

between repairs (average or MTBF).

Consequently, the cumulative plot should appear to follow a 

straight line.
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Data Limitations 

 Unfortunately, age related data is typically not 

available for systems.  

 Field reliability data is often presented in terms of a 

mean time between failure, MTBF.

 It is much easier to count the numbers of failures in a 

given time period (e.g., one month) for a group of 

systems operating for that time period than it is to 

obtain the system installation dates to measure age 

and the time dependent history of the ages of failures.

 Are there other ways to model the field behavior?
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Enhancing Graphical Analysis

Also, the cumulative plot alone does not tell us all we’d 
like to know. 

How precise is the estimate of N(t)?

What is the distribution of the number of repairs for 
systems at time t? 

What is the average number of repairs M(t) at time t.  
Called the mean cumulative function, MCF.

What is the distribution of the time to a specific number 
of repairs? 

Graphical analysis is important, but we need additional 
analytical and modeling tools.
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Importance of a Model

Helps us to understand current results.
Allows for prediction of future behavior. 
May prevent reaction to noise.
Helps identify potential failure mechanisms.

George Box: 

“All models are wrong.  Some are useful.”

What models are useful for repairable system?
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Key Analysis Variables

Two variables are of key interest:

M(t) the mean number of repairs by time t, that is, the

MCF

T(k) the time to reach the kth failure

For a renewal process, M(t), the MCF, is also called 

the renewal function, which is the expected (or 

average) value of N(t), the number of repairs by 

time t for a single system.
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Renewal Process: Single System

For a renewal process, the single distribution of failure times 

between repairs defines the expected pattern of repairs.

Let Xi denote the interarrival time between the ith and the (i-1) 

repair.

The time to the kth repair can be written as the sum of k

interarrival times

For example, if the first three interarrival times are 100, 150, and 

75 hours, then the time to the third repair is 100+150+75 = 325 

hours.

Knowing the probability distribution (pdf) of Xi, we can 

theoretically find distributions for N(t) and T(k) along with M(t)

and the renewal or recurrence rate (ROCOF) m(t) = dM(t)/dt

T k X i
i

k

( ) 



1
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Poisson Model for Renewal Process

Suppose the interarrival times Xi are i.i.d. with

exponential probability density function (pdf) having constant

failure rate intensity l, that is,

Then, we can show that N(t) has a Poisson distribution with 

constant renewal rate intensity l.  The expected number of 

repairs in time t is lt.

Note that l is a rate (i.e., repairs/time) that is multiplied by time t

to give the number of repairs by time t.

ll ( ) xf x e
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Homogeneous Poisson Process 

Model (HPP)

Consequently, the probability of observing exactly N(t) = k

failures in the interval (0,t) is given by the Poisson 

distribution

We call this renewal process for which the interarrival times 

are exponentially distributed a homogeneous Poisson 

process (HPP).

 
  ll 

 ( )
!

k tt e
P N t k

k
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MTBF for HPP

For a HPP,  the mean time between failures (MTBF) is 

constant and 

The expected number of repairs in time t is

M(t) = lt = t/q.

The mean time to the kth repair is

k/l = kq.

q l 1/MTBF
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HPP in Terms of MTBF

We can rewrite the Poisson distribution for the HPP in terms 

of the MTBF, q :

Example: The MTBF is 10,000 hours.  What’s the probability 

of one failure in 3 months?

The expected number lt is 

t/q = (91days x24hrs/day)/10,000 hrs = 0.218

The probability of exactly one failure is 

 
  qq 

 

//
( )

!

k tt e
P N t k

k

 
  

  

0.2180.218
( ) 1 0.0878

1!

e
P N t
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HPP for Multiple Systems

By multiplying the calculated HPP Poisson 

distribution probabilities for a given failure rate or 

MTBF by the number of systems, we can estimate 

the expected distribution of failures across many 

similar HPP systems.
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Examples of Questions on Repair 

Distributions for HPP
The MTBF is 10,000 hours.  Assume a HPP.   There are 100 

servers in use.  After 60 days:

What’s the expected number of systems with no repairs?

What’s the expected number of systems with exactly one 
repair?

What’s the expected number of systems with exactly two 
repairs?

What’s the expected number of systems with more than two 
repairs?
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Case Study HPP

There were a total of 476 hosts in a large datacenter.  

For confidentiality, the specific customer, type of 

system (large), and applications are not identified.

By determining an overall failure rate or MTBF over 

the previous few months, we checked for the 

suitability of an HPP model that could predict over 

the next 101 days how many of the 476 systems 

would have no failures, one failure, two failures, 

and so on.  This prediction was then compared 

against actual failure counts across all systems.

The model was in excellent agreement with observed 

results, confirming the HPP.
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Model Confirmation

Comparison of Poisson Distribution Predictions Versus Actual   

Failures for a 101 Day Period

Poisson Modeling: Total 476 Hosts
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Application Dependency

Application

Single Datacenter, 476 Identical Systems
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Application Modeling to Poisson 

Process
Each application was checked against Poisson 

distribution predictions. Agreement was excellent.
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Superposition of Poisson Processes

1 2.l l l 

1l 2l

1 1 2/ ( ).l l l

Consider two independent Poisson streams with 

separate rates    and     . If an event occurs 

whenever an event in either of the two Poisson 

process occurs, we have a superposition process 

with rate  

The probability of the next event coming from stream 

1 rather than stream 2 is  
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Superposition of Poisson Processes

The superposition of N Poisson processes with 

intensities                   is a Poisson process with 

intensity 
1 2, , , Nl l l

1 2 .Nl l l l   
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Failure Rate Estimates for Poisson 

Processes

l
 

  
 

63 365
0.48 per system

476 101

Over a period of 101 days, there were a total of 63 failures 

among the 476 systems in the datacenter.  The overall 

annualized recurrence rate (ARR) is estimated as

Similarly, we can estimate the  ARR separately for each 

application.



David C. Trindade, Sun Microsystems, Inc. Slide Number: 40Session 5Track 2

A
p

p
li
e

d
 R

e
li

a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a

 2
0

0
9

Superposition ARR Estimate

We can also estimate the overall ARR by using the 

weighted superposition formula for a HPP

This result matches the previous estimate for the 

overall ARR for the 476 servers, in agreement 

with the HPP superposition model.

0.56 45 1.20 33 2.03 48 0.051 350
0.48

476

i i

i

i

i

N

N

l

l
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Two Sample Test of MTBFs

 Tests for the statistical significance of the different 

MTBFs were performed*. All differences were 

significant.

 Test shown is for the smallest MTBF differences.

* “An EXCEL Add-In for Comparing Two Exponential Distributions”, D. Trindade, Proceedings of the 

Joint Statistical Meetings (2000) 
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Consequences and Implications

Since the results were consistent with a HPP, the implication 

was that the failure behavior for any system in the 

datacenter derived from a renewal process with a 

constant failure rate. 

Constant failure rates result from a constant source. 

There was no physical damage to the SRAM by the cause.  

The “good as new” assumption for a renewal process 

seemed valid. 

Failure rates were also determined to vary with altitude. 

This confirmed that only plausible source was radiation from 

cosmic rays causing single bit parity errors in the e-cache 

memory. Without corrective actions, failures would occur 

and panic the systems.   
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Efforts to Mitigate the Problem

E-Cache scrubbing via software

 Checking e-cache for parity errors and invalidating 

e-cache entry with error

 Scrubbing was done periodically, took cycles, and 

could not always catch error before load on system 

resulted in panic
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Physical Mechanisms

The radiation environment

Alpha particles

High energy cosmic rays

Low energy cosmic rays and 10B fission in boron-doped 

phosphosilicate glass (BPSG) dielectric layers of ICs

Factors impacting SER

Complexity

Density

Lower voltage

Higher speeds

Lower cell capacitance

The susceptibility to soft error rates for DRAM and SRAM has 

increased with reduced dimensions (higher densities) and 

lowered operating voltages of advancing technology.
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Read-Write Activity

The server writes to e-cache memory. Memory in e-cache can 

be saved to permanent memory. If a cosmic ray causes a 

parity error to occur in e-cache  and an attempt is made to 

read data in e-cache or to write it to main memory, the 

parity error will be detected and the system will panic to 

prevent data corruption. 

Scrubbing the e-cache to correct single bit errors in e-cache 

before the errors are written to memory was a band-aid 

approach.  A much more effective solution was to 

incorporate mirroring, where every byte is duplicated and 

stored in two locations in SRAM along with a parity checker 

built into the SRAM.

(Note: The equally effective alternative of replacing parity protection with 

single-error correction, double-error detection error correction code, 

“SECDED ECC”, was rejected as it would have required a change to 

the processor’s pipeline.) 
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Explaining Application Dependence

If an application writes often to memory but does not 

read frequently, an e-cache error can be 

overwritten before a read cycle sees the error.  

Imagine an application updating minutes used by 

a cell phone user.  Consequently, the failure rates 

will be low.

If an application reads frequently, then e-cached 

errors will be detected quickly and cause failures.  

The failure rates will be high.  
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Best Practices

Instead of removing a failed board, the simplest 

action was simply to reboot the system.  No 

physical damage had occurred and the probability 

of a hit by a cosmic ray was purely random. 

In addition, the costs of replacing boards and 

subsequent damage to the boards or systems 

(e.g., bent pins) could be avoided.

Spreadsheets were sent to the field for the service 

engineers to do the model fitting for any customer 

and illustrate the model consistency.
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Best Practices: Spreadsheet to Field
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Confirmation 

Introducing mirrored SRAMs into systems stopped 

the failures.
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Summary

 Field failures represent significant inconvenience to 

customers.

 Field failures remediation efforts are costly to system 

manufacturers.

 Complex systems make identification of causes 

difficult and challenging.

 Statistical analysis and modeling can provide valuable 

insights into causes.

 Undetected and uncorrected soft errors are a 

significant factor in system reliability, but there are 

approaches to alleviate the problem. 
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Where to Get More Information

 Google “soft error reliability” for a wealth of information on the 

topic.

 Search Wikipedia under “soft error”, “CPU cache”, “cosmic 

rays”.   

 SER-History, Trends, and Challenges by J. Ziegler and H. 

Puchner, Cypress Semiconductor Corporation (2004)

 “Radiation-Induced Soft Errors in Advanced Semiconductor 

Technologies”, R. Baumann, IEEE Trans. On Device and 

Materials Reliability, Vol. 5, No. 3, September 2005

 For statistical analysis and modeling of reliability data see 

Applied Reliability, 2nd ed. by P. Tobias and D. Trindade, 

Chapman  & Hall/CRC (1995)

 Additional references on modeling and data analysis at 

www.trindade.com/publications.html

http://www.trindade.com/publications.html
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Questions

Thank you for your attention.

Do you have any questions?


